
IIA Technical Report Series,No.13, pp.1-12, 2013 Report No: IIA-TRS-1313

 TECHNICAL REPORT

FINE IMAGE MOTION CONTROLER FOR KODAIKANAL TUNNEL

TELESCOPE

by

K. C. Thulasidharen., K. Prabhu., K. E. Rangarajan., N. Vasantharaju.,

B. Prabhu Ramkumar

Abstract:

 Automation of the spectropolarimetric observations at Kodaikanal

tunnel telescope needs placement of the Sun's image on the spectrograph slit

and scanning it across the region of interest. This requirement can be achieved

by controlling the tilt of the secondary mirror. Hence a fine image motion

controller for secondary mirror in Kodaikanal Tunnel Telescope was developed

and tested with telescope. A slo-syn stepper motor drive model SS2000D6 was

used for driving the Steper Motor HS50. A multi function PCI board from

measurement computing model PCI 2517 was used in giving signals to the

drive. Control software and user Interface were developed. The system was

calibrated to facilitate regular observations.

Key words: Coelostat, Stepper motor, Stepper motor drive, AC Servomotor, PCI

add on board, magnetic clutch.

Introduction :

In the recent years, a dual beam polarimeter was developed to be used along

with the spectrograph at Kodaikanal Tunnel telescope (Nagaraju,K. et. al 2007,

Nagaraju et. al. 2008 a) to measure the magnetic fields (Nagaraju, K. et al

2008b) present in the Sun. Usually the active regions on Sun occupy several

arcseconds requiring the spectrograph slit to scan across the region of interest

and measurements to be taken at each position of the slit. So far, at

Kodaikanal, this operation was carried out manually. That is, the secondary

mirror was moved using a coarse controller and positioning the image on the

slit. It was decided to automate this operation to improve temporal cadence and

accuracy.

Hence, a fine image motion controller for secondary mirror in Kodaikanal

Tunnel Telescope was developed and tested with telescope.

Kodaikanal Coelostat:

Figure 1.

The first mirror M1 tracks the sun. The second mirror guides the image in the

image plane in RA and DEC directions.

A Siemens servo motor drives the track mirror. An AC motor-stepper motor-

magnetic clutch unit drives the secondary mirror.

Figure 2.

System components:

Stepper motor

Figure 3. Stepper motor and its specifications.

Stepper motor drive

Figure 4. Stepper motor drive unit.

Slo-Syn 2000 drives are bipolar speed adjustable, two phase drives

which use power MOSFET and IGBT devices. They can be set to operate

a stepper motor in full or half steps or microsteps. The maximum

running speed is 10000 full steps per second.

1. Switch selectable current level of 0.5 through 6 amps depending on

the unit selected.

2. Latched short circuit protection.

3. Inputs are optically isolated.

4. Self test function

5. Boost current reduced current

PCI 2517 board:

Figure 5. PCI 2517 card which has 16 bit digital I/O, Counters ADC,

DAC and Software drivers.

SYSTEM BLOCK DIAGRAM:

Figure 6. System block diagram.

An AC motor is used for coarse motion of the image. A handset with switches

moves the image in N-S and E-W directions; normally AC motor is engaged to a

secondary mirror.

When 24 volt DC is applied to the clutch stepper motor is engaged to the gear.

Figure 7. Power supply and digital I/O.

Controller working:

The controller and PC is set up near the solar image plane of the

telescope. The RA stepper motor connection is given to the controller

and 24 volt DC is applied to the clutch.

Figure 8. Telescope testing

A known number of pulses is applied to the stepper motor drive and the

image moves. The fine image movement distance is entered in the user

interface screen and click start. The user interface screen is shown in

figure 9.

Figure 9. Screen shot of GUI. Delay is chosen between successive movements.

Step size is the number of steps. Distance is the distance to be moved in the

image plane.

Observational setup:

To test the fine image motion controller, a large graph sheet was firmly fixed in

the image plane of the telescope. The east and west limbs were marked on the

graph paper. The plate scale of the telescope is 5.5 arcseconds per mm. The

image was moved using the fine motion controller by sending known number of

pulses to the motor. The change in position of the limbs were measured. The

number of pulses versus the movement of the image is plotted in figure 10.

Figure 10. Calibration curve. This shows 600 pulses per mm with an error of

0.14 mm.

We obtain 600 pulses per mm with an accuracy of ±0.14mm. This corresponds

to nearly 0.5arcsec which is of the same order of the diffraction limit of the

telescope. Seeing and other distortions are usually more than the above error.

Acknowledgements:

We thank Mr. Sri Harsha of the electronics lab for wiring the unit. And

Devendran for helping us to take observations.

References :

On the performance of a dual-beam polarimeter at Kodaikanal Tower Telescope

by - Nagaraju, K.; Sankarasubramanian, K.; Rangarajan, K.E.; Ramesh, K.B.;

Singh, Jagdev; Devendran, P.; Hariharan 2008, BASI, 36, 99

An efficient modulation scheme for dual beam polarimetry by – Nagaraju, K.;

Ramesh, K. B.; Sankarasubramanian, K.; Rangarajan, K.E., 2007 BASI, 35,

307

On the Weakening of the Chromospheric Magnetic Field in Active Regions -

Nagaraju, K.; Sankarasubramanian, K.; Rangarajan, K.E., 2008, ApJ, 678, 531

Quick Start Guide – Measurement Computing

Installation instructions for Slo-Syn SS2000D3 and SS2000D6 packaged drives

- Superior Electric

APPENDIX

'Option Explicit

'Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Dim DataValue As Integer

Dim Distance As Single

Dim Npulse As Single

Dim Delay As Single

Dim I, J As Integer

Dim Size As Integer

Const BoardNum = 0 ' Board number

Const PortNum% = FIRSTPORTB ' use first digital port

Const Direction% = DIGITALOUT ' program digital port B for output

'Option Explicit

Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Private Sub CmdEnd_Click()

 ULStat% = cbDeclareRevision(CURRENTREVNUM)

 ULStat% = cbErrHandling(PRINTALL, DONTSTOP)

 If ULStat% <> 0 Then Stop

 DataValue = &H0

 ULStat% = cbDConfigPort(BoardNum, PortNum%, Direction%)

 If ULStat% <> 0 Then Stop

 ULStat% = cbDOut(BoardNum, PortNum%, DataValue%)

 End Sub

Private Sub CmdExit_Click()

End

End Sub

Private Sub CmdStart_Click()

' declare revision level of Universal Library

 For I = 1 To Npulse

 ULStat% = cbDeclareRevision(CURRENTREVNUM)

 ' Initiate error handling

 ' activating error handling will trap errors like

 ' bad channel numbers and non-configured conditions.

 ' Parameters:

 ' PRINTALL :all warnings and errors encountered will be printed

 ' DONTSTOP :if an error is encountered, the program will not stop,

 ' errors must be handled locally

 ULStat% = cbErrHandling(PRINTALL, DONTSTOP)

 If ULStat% <> 0 Then Stop

 ' If cbErrHandling% is set for STOPALL or STOPFATAL during the program

 ' design stage, Visual Basic will be unloaded when an error is encountered.

 ' We suggest trapping errors locally until the program is ready for compiling

 ' to avoid losing unsaved data during program design. This can be done by

 ' setting cbErrHandling options as above and checking the value of ULStat%

 ' after a call to the library. If it is not equal to 0, an error has occurred.

 ' configure FIRSTPORTA for digital output

 ' Parameters:

 ' BoardNum :the number used by CB.CFG to describe this board

 ' PortNum% :the output port

 ' Direction% :sets the port for input or output

 ULStat% = cbDConfigPort(BoardNum, PortNum%, Direction%)

 If ULStat% <> 0 Then Stop

 DataValue = &HA

 ULStat% = cbDOut(BoardNum, PortNum%, DataValue%)

 Sleep 5 'sleep

 ULStat% = cbErrHandling(PRINTALL, DONTSTOP)

 If ULStat% <> 0 Then Stop

 DataValue = &HB

ULStat% = cbDOut(BoardNum, PortNum%, DataValue%)

 Sleep 5 'sleep

 Next I

Sleep Delay 'Observation

End Sub

Private Sub txtNPulse_Change()

Npulse = Val(txtNPulse.Text)

End Sub

